clickhouse-driver Documentation
Release 0.1.3

clickhouse-driver authors

Mar 05, 2020

Contents

1 User’s Guide

1.1 Installation e e e e e
1.2 Quickstart e e e e e e e e e
1.3 Features. e e e e e e e e
1.4 Supported types e e e e e e e e e e e e e
1.5 Miscellaneous i e e e e e e e

2 API Reference

2.1 APIL . e
22 DBAPI2.0 . . . o e e e e
3 Additional Notes
3.1 Changelog o e e
3.2 LICENSE . . v v o e e e e
3.3 HowtoContribute o e e e e e e e e
Python Module Index
Index

clickhouse-driver Documentation, Release 0.1.3

Welcome to clickhouse-driver’s documentation. Get started with /nstallation and then get an overview with the Quick-
start where common queries are described.

Contents 1

clickhouse-driver Documentation, Release 0.1.3

2 Contents

CHAPTER 1

User’s Guide

This part of the documentation focuses on step-by-step instructions for development with clickhouse-driver.
Clickhouse-driver is designed to communicate with ClickHouse server from Python over native protocol.
ClickHouse server provider two protocols for communication: HTTP protocol and Native (TCP) protocol.
Each protocol has own advantages and disadvantages. Here we focus on advantages of native protocol:

* Native protocol is more configurable by various settings.

* Binary data transfer is more compact than text data.

* Building python types from binary data is more effective than from text data.

* LZ4 compression is faster than gzip. Gzip compression is used in HTTP protocol.

* Query profile info is available over native protocol. We can read rows before limit metric for example.

There is an asynchronous wrapper for clickhouse-driver: aioch. It’s available here.

1.1 Installation

1.1.1 Python Version

Clickhouse-driver supports Python 3.4 and newer, Python 2.7, and PyPy.

1.1.2 Build Dependencies

Starting from version 0.1.0 for building from source gcc, python and linux headers are required.

Example for python:alpine docker image:

apk add gcc musl-dev

https://catchchallenger.first-world.info/wiki/Quick_Benchmark:_Gzip_vs_Bzip2_vs_LZMA_vs_XZ_vs_LZ4_vs_LZO#Compression_time
https://github.com/mymarilyn/aioch

clickhouse-driver Documentation, Release 0.1.3

By default there are wheels for Linux, Mac OS X and Windows.
Packages for Linux and Mac OS X are available for python: 2.7, 3.4, 3.5, 3.6, 3.7, 3.8.
Packages for Windows are available for python: 2.7, 3.5, 3.6, 3.7, 3.8.

1.1.3 Dependencies

These distributions will be installed automatically when installing clickhouse-driver.
* pytz library for timezone calculations.

» enum34 backported Python 3.4 Enum.

Optional dependencies

These distributions will not be installed automatically. Clickhouse-driver will detect and use them if you install them.
* clickhouse-cityhash provides CityHash algorithm of specific version, see CityHash algorithm notes.
* 174 enables .Z4/L.ZAHC compression support.

* zstd enables ZSTD compression support.

1.1.4 Installation from PyPI

The package can be installed using pip:

’pip install clickhouse-driver ‘

You can install extras packages if you need compression support. Example of LZ4 compression requirements instal-
lation:

’pip install clickhouse-driver[lz4] ‘

You also can specify multiple extras by using comma. Install LZ4 and ZSTD requirements:

’pip install clickhouse-driver|[lz4, zstd] ‘

1.1.5 Installation from github

Development version can be installed directly from github:

pip install git+https://github.com/mymarilyn/clickhouse-driver@master
—#egg=clickhouse-driver

1.2 Quickstart

This page gives a good introduction to clickhouse-driver. It assumes you already have clickhouse-driver installed. If
you do not, head over to the Installation section.

A minimal working example looks like this:

4 Chapter 1. User’s Guide

http://pytz.sourceforge.net/
https://pypi.org/project/enum34/
https://pythonhosted.org/blinker/
https://python-lz4.readthedocs.io/
http://www.lz4.org/
https://pypi.org/project/zstd/
https://facebook.github.io/zstd/

clickhouse-driver Documentation, Release 0.1.3

>>> from clickhouse_driver import Client
>>>

>>> client = Client (host='localhost')
>>>

>>> client.execute ('SHOW DATABASES'")

[('"default',)]

This code will show all tables from 'default ' database.
There are two conceptual types of queries:

* Read only queries: SELECT, SHOW, etc.

* Read and write queries: INSERT.

Every query should be executed by calling one of the client’s execute methods: execute, execute_with_progress,

execute_iter method.

* SELECT queries can use execute, execute_with_progress, execute_iter methods.

* INSERT queries can use only execute method.

1.2.1 Selecting data

Simple select query looks like:

>>> client.execute ('SELECT % FROM system.numbers LIMIT 5'")
[0,), (1,), (2,), (3,), (4,)]1

Of course queries can and should be parameterized to avoid SQL injections:

>>> from datetime import date
>>> client.execute (
'SELECT , + Yy
{'date': date.today(), 'a': 1, 'b': 2}
o)
[('2018-10-21", 3)]

1.2.2 Selecting data with progress statistics

You can get query progress statistics by using execute_with_progress. It can be useful for cancelling long queries.

>>> from datetime import datetime

>>>

>>> progress = client.execute_with_progress(
'LONG AND COMPLICATED QUERY'

o)

>>>

>>> timeout = 20

>>> started_at = datetime.now ()

>>>

>>> for num_rows, total_rows in progress:
if total_rows:
done = float (num_rows) / total_rows
else:
done = total_rows

(continues on next page)

1.2. Quickstart

clickhouse-driver Documentation, Release 0.1.3

(continued from previous page)

now = datetime.now ()

elapsed = (now - started_at).total_seconds ()

Cancel query 1f it takes more than 20 seconds

to process 50% of rows.

if elapsed > timeout and done < 0.5:
client.cancel ()
break

else:
rv = progress.get_result ()
print (rv)

1.2.3 Streaming results

When you are dealing with large datasets block by block results streaming may be useful:

>>> settings = {'max_block_size': 100000}
>>> rows_gen = client.execute_iter(

'"QUERY WITH MANY ROWS', settings=settings
>>>
>>> for row in rows_gen:

print (row)

1.2.4 Inserting data
Insert queries in Native protocol are a little bit tricky because of ClickHouse’s columnar nature. And because we’re
using Python.

INSERT query consists of two parts: query statement and query values. Query values are split into chunks called
blocks. Each block is sent in binary columnar form.

As data in each block is sent in binary we should not serialize into string by using substitution % (a) s and then
deserialize it back into Python types.

This INSERT would be extremely slow if executed with thousands rows of data:

>>> client.execute (
"INSERT INTO test (x) VALUES (), ()roee
{'a': 1, 'b': 2, ...}

To insert data efficiently, provide data separately, and end your statement with a VALUES clause:

>>> client.execute (
'"INSERT INTO test (x) VALUES',
[{'x"'": 1}, {'x": 2}, {'"x": 3}, {'x": 100}]

4
>>> client.execute (
'"INSERT INTO test (x) VALUES',
[[2007]]

(continues on next page)

6 Chapter 1. User’s Guide

https://clickhouse.yandex/docs/en/single/index.html#native-interface-tcp

clickhouse-driver Documentation, Release 0.1.3

(continued from previous page)

1

>>> client.execute (
"INSERT INTO test
((x,)

(x) VALUES',
for x in range(5))

You can use any iterable yielding lists, tuples or dicts.

If data is not passed, connection will be terminated after a timeout.

>>> client.execute ('INSERT INTO test

(x)

VALUES') # will hang

The following WILL NOT work:

>>> client.execute (
'"INSERT INTO test
{lav: 1, Hh. 2}

(x)

VALUES (

Of course for INSERT ... SELECT queries data is not needed:

>>> client.execute (

'INSERT INTO test (x) '

{'"limit': 5}

[]

'SELECT % FROM system.numbers LIMIT 'y

ClickHouse will execute this query like a usual SELECT query.

1.2.5 DDL

DDL queries can be executed in the same way SELECT queries are executed:

[]
>>> client.execute ('CREATE TABLE test

L]

>>> client.execute ('DROP TABLE IF EXISTS test')

(x Int32) ENGINE = Memory')

1.2.6 Async and multithreading

Every ClickHouse query is assigned an identifier to enable request execution tracking. However, ClickHouse native
protocol is synchronous: all incoming queries are executed consecutively. Clickhouse-driver does not yet implement

a connection pool.

To utilize ClickHouse’s asynchronous capability you should either use multiple Client instances or implement a queue.

The same thing is applied to multithreading. Queries from different threads can’t use one Client instance with single
connection. You should use different clients for different threads.

However, if you are using DB API for communication with the server each cursor create its own Client instance. This

makes communication thread-safe.

1.2. Quickstart

clickhouse-driver Documentation, Release 0.1.3

1.3 Features

» Compression support:
- LZ4/LZAHC
- ZSTD

» TLS support (since server version 1.1.54304).

1.3.1 External data for query processing

You can pass external data alongside with query:

>>> tables = [{
'name': 'ext',
'structure': [('x'", '"Int32'), ('y', 'Array(Int32)')],
'data': [
{'x': 100, 'y': [2, 4, 6, 8]},
{'x': 500, 'y': [1, 3, 5, 71},

1
]
>>> client.execute (
'SELECT sum(x) FROM ext', external_tables=tables
o)
[(600,)]

1.3.2 Settings

There are a lot of ClickHouse server settings. Settings can be specified during Client initialization:

Set max number threads for all queries execution.
>>> settings = {'max_threads': 2}
>>> client = Client ('localhost', settings=settings)

Each setting can be overridden in an execute statement:

Set lower priority to query and limit max number threads
to execute the request.

>>> settings = {'max_threads': 2, 'priority': 10}

>>> client.execute ('SHOW TABLES', settings=settings)
[("first_table',)]

1.3.3 Compression

Native protocol supports two types of compression: LZ4 and ZSTD. When compression is enabled compressed data
should be hashed using CityHash algorithm. Additional packages should be install in order by enable compression
suport, see Installation from PyPI. Enabled client-side compression can save network traffic.

Client with compression support can be constructed as follows:

8 Chapter 1. User’s Guide

http://www.lz4.org/
https://facebook.github.io/zstd/
https://clickhouse.yandex/docs/en/single/index.html#external-data-for-query-processing
https://clickhouse.yandex/docs/en/single/index.html#server-settings
http://www.lz4.org/
https://facebook.github.io/zstd/
https://github.com/google/cityhash

clickhouse-driver Documentation, Release 0.1.3

>>> from clickhouse_driver import Client

>>> client_with_1z4 = Client ('localhost', compression=True)
>>> client_with_1z4 = Client ('localhost', compression='1z4")
>>> client_with_zstd = Client ('localhost', compression='zstd')

CityHash algorithm notes

Unfortunately ClickHouse server comes with built-in old version of CityHash algorithm (1.0.2). That’s why we can’t

use original CityHash package. An older version is published separately at PyPI.

1.3.4 Secure connection

>>> from clickhouse_driver import Client
>>>
>>> client = Client ('localhost', secure=True)
>>> # Using self-signed certificate.
self_signed_client = Client (
'localhost', secure=True,
ca_certs='/etc/clickhouse-server/server.crt'
)
>>> # Disable verification.
no_verifyed_client = Client (
'localhost', secure=True, verify=False
>>>
>>> # Example of secured client with Let's Encrypt certificate.
... import certifi
>>>
>>> client = Client (
'remote-host', secure=True, ca_certs=certifi.where/()

1.3.5 Specifying query id

You can manually set query identificator for each query. UUID for example:

>>> from uuid import uuid4
>>>
>>> query_id = str(uuid4())
>>> print (query_id)
bbd7dea3-eb63-4a21-b727-£55b420a7223
>>> client.execute (

'SELECT %= FROM system.processes', query_id=query_id
o)
[(1, 'default', 'bbd7dea3-eb63-4a21-b727-£55b420a7223"', '127.0.0.1"', 57664,
—'default', 'bbd7dea3-eb63-4a2l1-b727-£f55b420a7223"', '127.0.0.1', 57664, 1,
—'klebedev', 'klebedev-ThinkPad-T460', 'ClickHouse python-driver', 18, 10,
-3, 54406, 0, '', '', 0.004916541, 0, 0, O, O, O, 0, 0, 0, '"SELECT % FROM,
—system.processes', (25,), ('Query', 'SelectQuery',
— 'NetworkReceiveElapsedMicroseconds', 'ContextLock',
— 'RWLockAcquiredReadLocks'), (1, 1, 54, 9, 1), ('use_uncompressed_cache',
—'load_balancing', 'max_memory_usage'), ('0', 'random', '10000000000"))]

1.3. Features

https://pypi.org/project/cityhash
https://pypi.org/project/clickhouse-cityhash

clickhouse-driver Documentation, Release 0.1.3

You can cancel query with specific id by sending another query with the same query id if option replace_running_query
issetto 1.

Query results are fetched by the same instance of Client that emitted query.

1.3.6 Retrieving results in columnar form

Columnar form sometimes can be more useful.

>>> client.execute ('SELECT arrayJoin(range (3))', columnar=True)
[0, 1, 2)]

1.3.7 Data types checking on INSERT

Data types check is disabled for performance on INSERT queries. You can turn it on by types_check option:

>>> client.execute (
"INSERT INTO test (x) VALUES', [('abc',)1,
types_check=True

1.3.8 Query execution statistics

Client stores statistics about last query execution. It can be obtained by accessing last_query attribute. Statistics is
sent from ClickHouse server and calculated on client side. last_query contains info about:

* profile: rows before limit

>>> client.execute ('SELECT arrayJoin(range (100)) LIMIT 3")
[(0,), (1,), (2,)]

>>> client.last_query.profile_info.rows_before_limit

100

e progress:
— processed rows;
— processed bytes;
— total rows;
— written rows (new in version 0.1.3);

— written bytes (new in version 0.1.3);

>>> client.execute ('SELECT max (number) FROM numbers (10) ")
[(9,)]

>>> client.last_query.progress.rows

10

>>> client.last_query.progress.bytes

80

>>> client.last_query.progress.total_rows

10

* elapsed time:

10 Chapter 1. User’s Guide

https://clickhouse.yandex/docs/en/single/#replace-running-query

clickhouse-driver Documentation, Release 0.1.3

>>> client.execute ('SELECT sleep(1l)")
[(0,)]

>>> client.last_query.elapsed
1.0060372352600098

1.3.9 Receiving server logs

Query logs can be received from server by using send_logs_level setting:

>>> from logging.config import dictConfig
>>> # Simple logging configuration.
dictConfig ({

'version': 1,
'disable_existing_loggers': False,
'formatters': {
'standard': {
'format': '$(asctime)s % (levelname)-8s

by

I
'handlers': {
'default': {

"level': 'INFO',
'formatter': 'standard',
'class': 'logging.StreamHandler',

by
by
'loggers': {
ll: {
'handlers': ['default'],
'level': '"INFO',
'propagate': True

b

oo b
>>>
>>> settings = {'send_logs_level': 'debug'}

>>> client.execute ('SELECT 1', settings=settings)
2018-12-14 10:24:53,873 INFO clickhouse_driver.log:
—bdcc-97£44a7b28f2} [25] <Debug> executeQuery: (from
—SELECT 1

2018-12-14 10:24:53,874 INFO clickhouse_driver.log:
—bdcc-97£44a7b28£f2} [25] <Debug> executeQuery: Query
Expression

Expression

One
2018-12-14 10:24:53,875 INFO clickhouse_driver.log:

—bdcc-97£44a7b28£f2} [25] <Information> executeQuery:
—in 0.004 sec., 262 rows/sec., 262.32 B/sec.
2018-12-14 10:24:53,875 INFO clickhouse_driver.log:
—bdcc-97£44a7b28£f2} [25] <Debug> MemoryTracker: Peak
—query) : 40.23 KiB.

[(1,)]

% (name)s: % (message)s

{b328ad33-60e8-4012-
127.0.0.1:57762) _,

{b328ad33-60e8-4012-
pipeline:

{b328ad33-60e8-4012-
Read 1 rows, 1.00 B_

{b328ad33-60e8-4012-
memory usage (for

v

1.3.

Features

clickhouse-driver Documentation, Release 0.1.3

1.3.10 Multiple hosts

New in version 0.1.3.

Additional connection points can be defined by using alt_hosts. If main connection point is unavailable driver will use
next one from alt_hosts.

This option is good for ClickHouse cluster with multiple replicas.

>>> from clickhouse_driver import Client
>>> client = Client ('hostl', alt_hosts='host2:1234,host3,host4:5678")

In example above on every new connection driver will use following sequence of hosts if previous host is unavailable:
¢ host1:9000;
e host2:1234;
¢ host3:9000;
* host4:5678.

All queries within established connection will be sent to the same host.

1.3.11 Python DB API 2.0

New in version 0.1.3.
This driver is also implements DB API 2.0 specification. It can be useful for various integrations.
Threads may share the module and connections.

Parameters are expected in Python extended format codes, e.g. ... WHERE name=%(name)s.

>>> from clickhouse_driver import connect

>>> conn = connect ('clickhouse://localhost")
>>> cursor = conn.cursor ()
>>>

>>> cursor.execute ('SHOW TABLES'")

>>> cursor.fetchall ()

[("test',)]

>>> cursor.execute ('DROP TABLE IF EXISTS test')

>>> cursor.fetchall ()

[]

>>> cursor.execute ('CREATE TABLE test (x Int32) ENGINE = Memory')
>>> cursor.fetchall ()

>>> cursor.executemany (
'"INSERT INTO test (x) VALUES',
[{'"x": 100}]
)

>>> cursor.rowcount

>>> cursor.executemany (' INSERT INTO test (x) VALUES', [[200]])
>>> cursor.rowcount

>>> cursor.execute (
'INSERT INTO test (x) '
'SELECT % FROM system.numbers LIMIT 'y,
{'limit': 3}

(continues on next page)

12 Chapter 1. User’s Guide

https://www.python.org/dev/peps/pep-0249/

clickhouse-driver Documentation, Release 0.1.3

(continued from previous page)

)
>>> cursor.rowcount
0
>>> cursor.execute ('SELECT sum(x) FROM test')
>>> cursor.fetchall ()
[(303,)]

ClickHouse native protocol is synchronous: when you emit query in connection you must read whole server response
before sending next query through this connection. To make DB API thread-safe each cursor should use it’s own
connection to the server. In Under the hood Cursor is wrapper around pure Client.

Connection class is just wrapper for handling multiple cursors (clients) and do not initiate actual connections to the
ClickHouse server.

There are some non-standard ClickHouse-related Cursor methods for: external data, settings, etc.

For automatic disposal Connection and Cursor instances can be used as context managers:

>>> with connect ('clickhouse://localhost') as conn:

>>> with conn.cursor () as cursor:
>>> cursor.execute ('SHOW TABLES'")
>>> print (cursor.fetchall())

1.4 Supported types

Each ClickHouse type is deserialized to a corresponding Python type when SELECT queries are prepared. When
serializing INSERT queries, clickhouse-driver accepts a broader range of Python types. The following ClickHouse
types are supported by clickhouse-driver:

1.4.1 [U]Int8/16/32/64

INSERT types: int, long.
SELECT type: int.

1.4.2 Float32/64

INSERT types: £1oat, int, long.

SELECT type: f£loat.

1.4.3 Date

INSERT types: date, datetime.

SELECT type: date.

1.4.4 DateTime(‘timezone’)/DateTime64(‘timezone’)

Timezone support is new in version 0.0.11. DateTime64 support is new in version 0.1.3.

INSERT types: datetime, int, long.

1.4. Supported types 13

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/2/library/functions.html#long
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/2/library/functions.html#long
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/2/library/functions.html#long

clickhouse-driver Documentation, Release 0.1.3

Integers are interpreted as seconds without timezone (UNIX timestamps). Integers can be used when insertion of
datetime column is a bottleneck.

SELECT type: datetime.
Setting use_client_time_zone is taken into consideration.
You can cast DateTime column to integers if you are facing performance issues when selecting large amount of rows.

Due to Python’s current limitations minimal DateTime64 resolution is one microsecond.

1.4.5 String/FixedString(N)

INSERT types: str/basestring, bytearray, bytes. See note below.
SELECT type: str/basestring, bytes. See note below.
String column is encoded/decoded using UTF-8 encoding.

String column can be returned without decoding. Return values are byfzes:

>>> settings = {'strings_as_bytes': True}
>>> rows = client.execute (
'SELECT % FROM table_with_strings',
settings=settings

If a column has FixedString type, upon returning from SELECT it may contain trailing zeroes in accordance with
ClickHouse’s storage format. Trailing zeroes are stripped by driver for convenience.

During SELECT, if a string cannot be decoded with UTF-8 encoding, it will return as bytes.

During INSERT, if strings_as_bytes setting is not specified and string cannot be encoded with UTF-8, a
UnicodeEncodeError will be raised.

1.4.6 Enum8/16

INSERT types: Enum, int, long, str/basestring.
SELECT type: str/basestring.

>>> from enum import IntEnum

>>>

>>> class MyEnum (IntEnum) :
foo = 1
bar = 2

>>> client.execute ('DROP TABLE IF EXISTS test')

>>> client.execute('''
CREATE TABLE test
(
x Enum8 ('foo' = 1, 'bar' = 2)
) ENGINE = Memory
’lV)

>>> client.execute (
'"INSERT INTO test (x) VALUES',
[{"x": MyEnum.foo}, {'x': 'bar'}, {'x': 1}]

(continues on next page)

14 Chapter 1. User’s Guide

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://clickhouse.yandex/docs/en/single/#datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/2/library/functions.html#long
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/2/library/functions.html#basestring

clickhouse-driver Documentation, Release 0.1.3

(continued from previous page)

co)
3
>>> client.execute ('SELECT * FROM test')
[("foo',), ('bar',), ('foo',)]

For Python 2.7 enum34 package is used.

Currently clickhouse-driver can’t handle empty enum value due to Python’s Enum mechanics. Enum member name

must be not empty. See issue and workaround.

1.4.7 Array(T)

INSERT types: 1ist, tuple.
SELECT type: tuple.

[]

>>> client.execute (
'CREATE TABLE test
'ENGINE = Memory'

o)

[]

>>> client.execute (

'"INSERT INTO test (x) VALUES',
[{'x": [10, 20, 3071}, {'x': [11,
)
2
>>> client.execute ('SELECT » FROM test')
[((10, 20, 30),), ((11, 21, 31),)]

>>> client.execute ('DROP TABLE IF EXISTS test')

(x Array (Int32)) '

21, 311}]

1.4.8 Nullable(T)

INSERT types: NoneType, T.
SELECT type: NoneType, T.

1.4.9 UUID

INSERT types: str/basestring, UUID.
SELECT type: UUID.

1.4.10 Decimal

New in version 0.0.16.
INSERT types: Decimal, float, int, long.
SELECT type: Decimal.

1.4. Supported types

15

https://pypi.org/project/enum34
https://github.com/mymarilyn/clickhouse-driver/issues/48
https://github.com/mymarilyn/clickhouse-driver/issues/48#issuecomment-412480613
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/types.html#types.NoneType
https://docs.python.org/2/library/types.html#types.NoneType
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/3/library/uuid.html#uuid.UUID
https://docs.python.org/3/library/uuid.html#uuid.UUID
https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/2/library/functions.html#long
https://docs.python.org/3/library/decimal.html#decimal.Decimal

clickhouse-driver Documentation, Release 0.1.3

1.4.11 IPv4/IPv6

New in version 0.0.19.
INSERT types: IPv4Address/IPv6Address, int, long, str/basestring
SELECT type: IPv4Address/IPv6Address.

>>> from ipaddress import IPv4Address, IPv6Address
>>>
>>> client.execute ('DROP TABLE IF EXISTS test')
[]
>>> client.execute (
'CREATE TABLE test (x IPv4) '
'ENGINE = Memory'

>>> client.execute (
"INSERT INTO test (x) VALUES', [
{'x"'": '192.168.253.42"'},
{'x': 167772161},
{'"x": IPv4Address('192.168.253.42")}
oo D)
3
>>> client.execute ('SELECT + FROM test')

—'192.168.253.42"),)]
>>>
>>> client.execute ('DROP TABLE IF EXISTS test')
[]
>>> client.execute (
'CREATE TABLE test (x IPv6) '
'ENGINE = Memory'

[]
>>> client.execute (

"INSERT INTO test (x) VALUES', [

{'x"'": '79f4:e698:45de:a59%:2765:28e3:8d3a:35ae'},

oo 1)
3

>>> client.execute ('SELECT + FROM test')
[(IPv6Address ('79f4:e698:45de:a590:2765:28e3:8d3a:35ae'"),),

>>>

[(IPv4Address ('192.168.253.42"),), (IPv4Address('10.0.0.1"),), (IPv4Address (

{'x"'": IPv6Address ('12ff:0000:0000:0000:0000:0000:0000:0001") 1},
{'x": b"y\xf4\xe6\x98E\xde\xa5\x9b"'e (\xe3\x8d:5\xae"}

—'12ff::1"),), (IPv6Address('79f4:e698:45de:a59%0:2765:28e3:8d3a:35ae'),)]

(IPvoAddress (

For Python 2.7 ipaddress package is used.

1.4.12 LowCardinality(T)

New in version 0.0.20.
INSERT types: T.
SELECT type: T.

16

Chapter 1. User’s Guide

https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv4Address
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv6Address
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/2/library/functions.html#long
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv4Address
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv6Address
https://pypi.org/project/ipaddress

clickhouse-driver Documentation, Release 0.1.3

1.4.13 SimpleAggregateFunction(F, T)

New in version 0.0.21.

INSERT types: T.

SELECT type: T.

AggregateFunctions for AggregatingMergeTree Engine are not supported.

1.5 Miscellaneous

1.5.1 Client configuring from URL

New in version 0.1.1.

Client can be configured from the given URL:

>>> from clickhouse_driver import Client
>>> client = Client.from_url (
'clickhouse://login:password@host:port/database’

Port 9000 is default for schema c1lickhouse, port 9440 is default for schema c1ickhouses.

Connection to default database:

>>> client = Client.from_url ('clickhouse://localhost")

Querystring arguments will be passed along to the Connection () class’s initializer:

>>> client = Client.from_url (
'clickhouse://localhost/database?send_logs_level=traces'
'client_name=myclienté&’
'compression=1z4"

If parameter doesn’t match Connection’s init signature will be treated as settings parameter.

1.5.2 Inserting data from CSV file

Let’s assume you have following data in CSV file.

$ cat /tmp/data.csv

time, order, gty

2019-08-01 15:23:14,New orderl,5
2019-08-05 09:14:45,New order2,3
2019-08-13 12:20:32,New order3,7

Data can be inserted into ClickHouse in the following way:

>>> from csv import DictReader
>>> from datetime import datetime
>>>

>>> from clickhouse_driver import Client

(continues on next page)

1.5. Miscellaneous

17

clickhouse-driver Documentation, Release 0.1.3

(continued from previous page)

>>>
>>>
>>> def iter_csv(filename) :

converters = {
'gty': int,
'time': lambda x: datetime.strptime (x,

with open(filename, 'r') as f:
reader DictReader (f)
for line in reader:
. yield {k: (converters[k] (v)
< v in line.items ()}

>>> client =
>>>
>>> client.execute (

'CREATE TABLE IF NOT EXISTS data_csv '

l(l

Client ('"localhost")

'time DateTime,

'order String, '

'gty Int32'
') Engine = Memory'
cee)
>>> []
>>> client.execute ('INSERT INTO data_csv VALUES',
3

if k in converters else V)

for k,

iter_csv('/tmp/data.csv'))

Table can be populated with json file in the similar way.

1.5.3 Adding missed settings

It’s hard to keep package settings in consistent state with ClickHouse server’s. Some settings can be missed if your
server is old. But, if setting is supported by your server and missed in the package it can be added by simple monkey
pathing. Just look into ClickHouse server source and pick corresponding setting type from package or write your own

type.
>>> from clickhouse_driver.settings.available import settings as available_
—settings, SettingBool
>>> from clickhouse_driver import Client
>>>
>>> available_settings['allow_suspicious_low_cardinality_ types'] =_
—SettingBool
>>>
>>> client = Client ('localhost', settings={'allow_suspicious_low_cardinality__
—types': True})
>>> client.execute ('CREATE TABLE test (x LowCardinality (Int32)) Engine = Null
")
[]

18 Chapter 1. User’s Guide

CHAPTER 2

API Reference

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

2.1 API

This part of the documentation covers basic classes of the driver: Client, Connection and others.

2.1.1 Client

class clickhouse_driver.Client (*args, **kwargs)
Client for communication with the ClickHouse server. Single connection is established per each connected
instance of the client.

Parameters settings — Dictionary of settings that passed to every query. Defaults to None (no
additional settings). See all available settings in ClickHouse docs.

Driver’s settings:
* insert_block_size — chunk size to split rows for INSERT. Defaults to 1048576.
e strings_as_bytes — turns off string column encoding/decoding.

disconnect ()
Disconnects from the server.

execute (query, params=None, with_column_types=False, external_tables=None, query_id=None,

settings=None, types_check=False, columnar=False)
Executes query.

Establishes new connection if it wasn’t established yet. After query execution connection remains intact
for next queries. If connection can’t be reused it will be closed and new connection will be created.

Parameters

* query — query that will be send to server.

19

https://clickhouse.yandex/docs/en/single/#settings

clickhouse-driver Documentation, Release 0.1.3

* params — substitution parameters for SELECT queries and data for INSERT queries.
Data for INSERT can be list, tuple or GeneratorType. Defaults to None (no parame-
ters or data).

* with_column_types —if specified column names and types will be returned alongside
with result. Defaults to False.

e external_tables — external tables to send. Defaults to None (no external tables).

* query_id-the query identifier. If no query id specified ClickHouse server will generate
it.

* settings — dictionary of query settings. Defaults to None (no additional settings).

* types_check — enables type checking of data for INSERT queries. Causes additional
overhead. Defaults to False.

* columnar - if specified the result of the SELECT query will be returned in column-
oriented form. It also allows to INSERT data in columnar form. Defaults to False
(row-like form).

Returns

* number of inserted rows for INSERT queries with data. Returning rows count from IN-
SERT FROM SELECT is not supported.

e if with_column_types=False: list of tuples with rows/columns.
o if with_column_types=True: tuple of 2 elements:
— The first element is list of tuples with rows/columns.
— The second element information is about columns: names and types.

execute_iter (query, params=None, with_column_types=False, external_tables=None,

query_id=None, settings=None, types_check=False)
New in version 0.0.14.

Executes SELECT query with results streaming. See, Streaming results.
Parameters
* query — query that will be send to server.

* params — substitution parameters for SELECT queries and data for INSERT queries.
Data for INSERT can be list, tuple or GeneratorType. Defaults to None (no
parameters or data).

* with_column_types — if specified column names and types will be returned
alongside with result. Defaults to False.

e external_ tables - external tables to send. Defaults to None (no external ta-
bles).

* query_id - the query identifier. If no query id specified ClickHouse server will
generate it.

* settings — dictionary of query settings. Defaults to None (no additional settings).

* types_check — enables type checking of data for INSERT queries. Causes addi-
tional overhead. Defaults to False.

Returns IterQueryResult proxy.

20 Chapter 2. API Reference

https://docs.python.org/3/library/types.html#types.GeneratorType
https://docs.python.org/3/library/types.html#types.GeneratorType

clickhouse-driver Documentation, Release 0.1.3

execute_with_progress (query, params=None, with_column_types=False, exter-
nal_tables=None, query_id=None, settings=None, types_check=False,

columnar=False)
Executes SELECT query with progress information. See, Selecting data with progress statistics.

Parameters
* query — query that will be send to server.

* params - substitution parameters for SELECT queries and data for INSERT queries.
Data for INSERT can be list, tuple or GeneratorType. Defaults to None (no
parameters or data).

* with_column_types - if specified column names and types will be returned
alongside with result. Defaults to False.

e external tables - external tables to send. Defaults to None (no external ta-
bles).

* query_id - the query identifier. If no query id specified ClickHouse server will
generate it.

* settings — dictionary of query settings. Defaults to None (no additional settings).

* types_check - enables type checking of data for INSERT queries. Causes addi-
tional overhead. Defaults to False.

* columnar - if specified the result will be returned in column-oriented form. De-
faults to False (row-like form).

Returns ProgressQueryResult proxy.

classmethod from url (url)
Return a client configured from the given URL.

For example:

clickhouse://[user:password]@localhost:9000/default
clickhouses://[user:password]@localhost:9440/default

Three URL schemes are supported: clickhouse:// creates a normal TCP socket connection click-
houses:// creates a SSL wrapped TCP socket connection

Any additional querystring arguments will be passed along to the Connection class’s initializer.

2.1.2 Connection

class clickhouse_driver.connection.Connection (host, port=None, database=’default’,
user="default’, pass-
word="", client_name="python-
driver’, connect_timeout=10,
send_receive_timeout=300,
sync_request_timeout=>5, com-
press_block_size=1048576, compres-
sion=False, secure=False, verify=True,
ssl_version=None, ca_certs=None,

ciphers=None, alt_hosts=None)
Represents connection between client and ClickHouse server.

Parameters

2.1. API 21

https://docs.python.org/3/library/types.html#types.GeneratorType

clickhouse-driver Documentation, Release 0.1.3

* host — host with running ClickHouse server.

» port —port ClickHouse server is bound to. Defaults to 900 0 if connection is not secured
and to 9440 if connection is secured.

* database — database connect to. Defaults to 'default'.
¢ user — database user. Defaults to 'default’.
* password — user’s password. Defaults to ' ' (no password).

* client_name - this name will appear in server logs. Defaults to
'python-driver’'.

* connect_timeout — timeout for establishing connection. Defaults to 10 seconds.

* send_receive_timeout — timeout for sending and receiving data. Defaults to 300
seconds.

* sync_request_timeout - timeout for server ping. Defaults to 5 seconds.
* compress_block_size - size of compressed block to send. Defaults to 1048576.

* compression — specifies whether or not use compression. Defaults to False. Possi-
ble choices:

True is equivalentto '1z4"'.

- '1z4".

'lz4hc' high-compression variantof '1z4"'.
- 'zstd'.
¢ secure - establish secure connection. Defaults to False.

* verify - specifies whether a certificate is required and whether it will be validated after
connection. Defaults to True.

* ssl_version-see ssl.wrap_socket () docs.
e ca_certs-—see ssl.wrap_socket () docs.
* ciphers —see ssl.wrap_socket () docs.

e alt_hosts - list of alternative hosts for connection. Example:
alt_hosts=host1:port1,host2:port2.

disconnect ()
Closes connection between server and client. Frees resources: e.g. closes socket.

2.1.3 QueryResult

class clickhouse_driver.result.QueryResult (packet_generator, with_column_types=False,

columnar=Fualse)
Stores query result from multiple blocks.

get_result ()

Returns stored query result.

22 Chapter 2. API Reference

https://docs.python.org/3/library/ssl.html#ssl.wrap_socket
https://docs.python.org/3/library/ssl.html#ssl.wrap_socket
https://docs.python.org/3/library/ssl.html#ssl.wrap_socket

clickhouse-driver Documentation, Release 0.1.3

2.1.4 ProgressQueryResult

class clickhouse_driver.result.ProgressQueryResult (packet_generator,
with_column_types=False, colum-

nar=False)
Stores query result and progress information from multiple blocks. Provides iteration over query progress.

get_result ()

Returns stored query result.

2.1.5 IterQueryResult

class clickhouse_driver.result.IterQueryResult (packet_generator,

with_column_types=False)
Provides iteration over returned data by chunks (streaming by chunks).

2.2 DB API 2.0

This part of the documentation covers driver DB APIL.

clickhouse_driver.dbapi.connect (dsn=None, user=None, password=None, host=None,

port=None, database=None, **kwargs)
Create a new database connection.

The connection parameters can be specified via DSN:
conn = clickhouse_driver.connect ("clickhouse://localhost/test")
or using database and credentials arguments:

conn = clickhouse_driver.connect (database="test", user="default",
password="default", host="localhost")

The basic connection parameters are:
* host: host with running ClickHouse server.
* port: port ClickHouse server is bound to.
* database: database connect to.
* user: database user.
* password: user’s password.
See defaults in Connect ion constructor.
DSN or host is required.
Any other keyword parameter will be passed to the underlying Connection class.
Returns a new connection.
exception clickhouse_driver.dbapi.Warning
exception clickhouse_driver.dbapi.Error
exception clickhouse_driver.dbapi.DataError
exception clickhouse_driver.dbapi.DatabaseError

exception clickhouse_driver.dbapi.ProgrammingError

2.2. DB API12.0 23

clickhouse-driver Documentation, Release 0.1.3

exception clickhouse_driver.dbapi.IntegrityError
exception clickhouse_driver.dbapi.InterfaceError
exception clickhouse_driver.dbapi.InternalError
exception clickhouse_driver.dbapi.NotSupportedError

exception clickhouse_driver.dbapi.OperationalError

2.2.1 Connection

class clickhouse_driver.dbapi.connection.Connection (dsn=None, user=None, pass-

word=None, host=None,
port=None, database=None,
**kwargs)

Creates new Connection for accessing ClickHouse database.

Connection is just wrapper for handling multiple cursors (clients) and do not initiate actual connections to the
ClickHouse server.

See parameters description in Connection.

close ()
Close the connection now. The connection will be unusable from this point forward; an Error (or
subclass) exception will be raised if any operation is attempted with the connection. The same applies to
all cursor objects trying to use the connection.

commit ()
Do nothing since ClickHouse has no transactions.

cursor ()
Returns a new Cursor Object using the connection.

rollback ()
Do nothing since ClickHouse has no transactions.

2.2.2 Cursor

class clickhouse_driver.dbapi.cursor.Cursor (client)

close ()
Close the cursor now. The cursor will be unusable from this point forward; an Error (or subclass)
exception will be raised if any operation is attempted with the cursor.

execute (operation, parameters=None)
Prepare and execute a database operation (query or command).

Parameters

* operation — query or command to execute.

* parameters — sequence or mapping that will be bound to variables in the operation.
Returns None

executemany (operation, seq_of_parameters)
Prepare a database operation (query or command) and then execute it against all parameter sequences
found in the sequence seq_of_parameters.

24 Chapter 2. API Reference

clickhouse-driver Documentation, Release 0.1.3

Parameters

¢ operation — query or command to execute.

* seq of parameters - sequences or mappings for execution.
Returns None

fetchall ()

Fetch all (remaining) rows of a query result, returning them as a sequence of sequences (e.g. a list of
tuples).

Returns list of fetched rows.

fetchmany (size=None)

Fetch the next set of rows of a query result, returning a sequence of sequences (e.g. a list of tuples). An
empty sequence is returned when no more rows are available.

Parameters size — amount of rows to return.
Returns list of fetched rows or empty list.

fetchone ()

Fetch the next row of a query result set, returning a single sequence, or None when no more data is
available.

Returns the next row of a query result set or None.
rowcount

Returns the number of rows that the last .execute*() produced.

set_external table (name, structure, data)
Adds external table to cursor context.

If the same table is specified more than once the last one is used.

Parameters

¢ name — name of external table

* structure — list of tuples (name, type) that defines table structure. Example [(X,
‘Int32")].

* data - sequence of rows of tuples or dicts for transmission.
Returns None
set_settings (settings)

Specifies settings for cursor.

Parameters settings — dictionary of query settings
Returns None

set_stream_results (stream_results, max_row_buffer)

Toggles results streaming from server. Driver will consume block-by-block of max_row_buffer size and
yield row-by-row from each block.

Parameters

* stream_results —enable or disable results streaming.

* max_row_buffer — specifies the maximum number of rows to buffer at a time.
Returns None

2.2. DB API12.0

25

clickhouse-driver Documentation, Release 0.1.3

set_types_check (types_check)
Toggles type checking for sequence of INSERT parameters. Disabled by default.

Parameters types_check — new types check value.

Returns None

26 Chapter 2. API Reference

CHAPTER 3

Additional Notes

Legal information, changelog and contributing are here for the interested.

3.1 Changelog

Changelog is available in github repo.

3.2 License

ClickHouse Python Driver is distributed under the MIT license.

3.3 How to Contribute

1. Check for open issues or open a fresh issue to start a discussion around a feature idea or a bug.
2. Fork the repository on GitHub to start making your changes to the master branch (or branch off of it).
3. Write a test which shows that the bug was fixed or that the feature works as expected.

4. Send a pull request and bug the maintainer until it gets merged and published.

27

https://github.com/mymarilyn/clickhouse-driver/blob/master/CHANGELOG.md
http://www.opensource.org/licenses/mit-license.php
https://github.com/mymarilyn/clickhouse-driver

clickhouse-driver Documentation, Release 0.1.3

28 Chapter 3. Additional Notes

Python Module Index

C

clickhouse_driver, 19
clickhouse_driver.dbapi, 23

29

clickhouse-driver Documentation, Release 0.1.3

30 Python Module Index

Index

C

clickhouse_driver (module), 19

F

fetchall () (clickhouse_driver.dbapi.cursor.Cursor

clickhouse_driver.dbapi (module), 23 method), 25
Client (class in clickhouse_driver), 19 fetchmany () (clickhouse_driver.dbapi.cursor.Cursor
close () (clickhouse_driver.dbapi.connection.Connection method), 25

method), 24 fetchone () (clickhouse_driver.dbapi.cursor.Cursor
close () (clickhouse_driver.dbapi.cursor. Cursor method), 25

method), 24 from_url () (clickhouse_driver.Client class method),
commit () (clickhouse_driver.dbapi.connection.Connection 21

method), 24

connect () (in module clickhouse_driver.dbapi), 23

Connection (class in clickhouse_driver.connection),
21

Connection (class in
house_driver.dbapi.connection), 24

Cursor (class in clickhouse_driver.dbapi.cursor), 24

click-

G

get_result ()
house_driver.result. ProgressQueryResult
method), 23

get_result () (clickhouse_driver.result. QueryResult
method), 22

(click-

cursor () (clickhouse_driver.dbapi.connection.Connection

method), 24

D

DatabaseError, 23

DataError, 23

disconnect () (clickhouse_driver.Client method), 19

disconnect () (click-
house_driver.connection.Connection method),
22

E

Error, 23
execute () (clickhouse_driver.Client method), 19
execute () (clickhouse_driver.dbapi.cursor. Cursor

method), 24

execute_iter () (clickhouse_driver.Client method),
20

execute_with_progress () (click-
house_driver.Client method), 20

executemany () (click-
house_driver.dbapi.cursor. Cursor method),

24

IntegrityError, 23

InterfaceError, 24

InternalError, 24

IterQueryResult (class in clickhouse_driver.result),
23

N

NotSupportedError, 24

O

OperationalError, 24

P

ProgrammingError, 23
ProgressQueryResult
house_driver.result), 23

(class in click-

Q

QueryResult (class in clickhouse_driver.result), 22

31

clickhouse-driver Documentation, Release 0.1.3

R

rollback () (clickhouse_driver.dbapi.connection.Connection

method), 24

rowcount (clickhouse_driver.dbapi.cursor.Cursor at-

tribute), 25

S

set_external_table()
house_driver.dbapi.cursor. Cursor
25

set_settings()
house_driver.dbapi.cursor.Cursor
25

set_stream_results()
house_driver.dbapi.cursor. Cursor
25

set_types_check ()
house_driver.dbapi.cursor.Cursor
25

W

Warning, 23

(click-
method),

(click-
method),

(click-
method),

(click-
method),

32

Index

	User’s Guide
	Installation
	Quickstart
	Features
	Supported types
	Miscellaneous

	API Reference
	API
	DB API 2.0

	Additional Notes
	Changelog
	License
	How to Contribute

	Python Module Index
	Index

