Features¶
External data for query processing¶
You can pass external data alongside with query:
>>> tables = [{ ... 'name': 'ext', ... 'structure': [('x', 'Int32'), ('y', 'Array(Int32)')], ... 'data': [ ... {'x': 100, 'y': [2, 4, 6, 8]}, ... {'x': 500, 'y': [1, 3, 5, 7]}, ... ] ... }] >>> client.execute( ... 'SELECT sum(x) FROM ext', external_tables=tables ... ) [(600,)]
Settings¶
There are a lot of ClickHouse server settings. Settings can be specified during Client initialization:
# Set max number threads for all queries execution. >>> settings = {'max_threads': 2} >>> client = Client('localhost', settings=settings)
Each setting can be overridden in an execute statement:
# Set lower priority to query and limit max number threads # to execute the request. >>> settings = {'max_threads': 2, 'priority': 10} >>> client.execute('SHOW TABLES', settings=settings) [('first_table',)]
Compression¶
Native protocol supports two types of compression: LZ4 and ZSTD. When compression is enabled compressed data should be hashed using CityHash algorithm. Additional packages should be install in order by enable compression suport, see Installation from PyPI. Enabled client-side compression can save network traffic.
Client with compression support can be constructed as follows:
>>> from clickhouse_driver import Client >>> client_with_lz4 = Client('localhost', compression=True) >>> client_with_lz4 = Client('localhost', compression='lz4') >>> client_with_zstd = Client('localhost', compression='zstd')
Secure connection¶
>>> from clickhouse_driver import Client >>> >>> client = Client('localhost', secure=True) >>> # Using self-signed certificate. ... self_signed_client = Client( ... 'localhost', secure=True, ... ca_certs='/etc/clickhouse-server/server.crt' ... ) >>> # Disable verification. ... no_verifyed_client = Client( ... 'localhost', secure=True, verify=False ... ) >>> >>> # Example of secured client with Let's Encrypt certificate. ... import certifi >>> >>> client = Client( ... 'remote-host', secure=True, ca_certs=certifi.where() ... )
Specifying query id¶
You can manually set query identificator for each query. UUID for example:
>>> from uuid import uuid4 >>> >>> query_id = str(uuid4()) >>> print(query_id) bbd7dea3-eb63-4a21-b727-f55b420a7223 >>> client.execute( ... 'SELECT * FROM system.processes', query_id=query_id ... ) [(1, 'default', 'bbd7dea3-eb63-4a21-b727-f55b420a7223', '127.0.0.1', 57664, 'default', 'bbd7dea3-eb63-4a21-b727-f55b420a7223', '127.0.0.1', 57664, 1, 'klebedev', 'klebedev-ThinkPad-T460', 'ClickHouse python-driver', 18, 10, 3, 54406, 0, '', '', 0.004916541, 0, 0, 0, 0, 0, 0, 0, 0, 'SELECT * FROM system.processes', (25,), ('Query', 'SelectQuery', 'NetworkReceiveElapsedMicroseconds', 'ContextLock', 'RWLockAcquiredReadLocks'), (1, 1, 54, 9, 1), ('use_uncompressed_cache', 'load_balancing', 'max_memory_usage'), ('0', 'random', '10000000000'))]
You can cancel query with specific id by sending another query with the same query id if option replace_running_query is set to 1.
Query results are fetched by the same instance of Client that emitted query.
Retrieving results in columnar form¶
Columnar form sometimes can be more useful.
>>> client.execute('SELECT arrayJoin(range(3))', columnar=True) [(0, 1, 2)]
Data types checking on INSERT¶
Data types check is disabled for performance on INSERT
queries.
You can turn it on by types_check option:
>>> client.execute( ... 'INSERT INTO test (x) VALUES', [('abc', )], ... types_check=True ... )
Query execution statistics¶
Client stores statistics about last query execution. It can be obtained by accessing last_query attribute. Statistics is sent from ClickHouse server and calculated on client side. last_query contains info about:
profile: rows before limit
>>> client.execute('SELECT arrayJoin(range(100)) LIMIT 3') [(0,), (1,), (2,)] >>> client.last_query.profile_info.rows_before_limit 100
progress: processed rows, bytes and total rows
>>> client.execute('SELECT max(number) FROM numbers(10)') [(9,)] >>> client.last_query.progress.rows 10 >>> client.last_query.progress.bytes 80 >>> client.last_query.progress.total_rows 10
elapsed time:
>>> client.execute('SELECT sleep(1)') [(0,)] >>> client.last_query.elapsed 1.0060372352600098
Receiving server logs¶
Query logs can be received from server by using send_logs_level setting:
>>> from logging.config import dictConfig >>> # Simple logging configuration. ... dictConfig({ ... 'version': 1, ... 'disable_existing_loggers': False, ... 'formatters': { ... 'standard': { ... 'format': '%(asctime)s %(levelname)-8s %(name)s: %(message)s' ... }, ... }, ... 'handlers': { ... 'default': { ... 'level': 'INFO', ... 'formatter': 'standard', ... 'class': 'logging.StreamHandler', ... }, ... }, ... 'loggers': { ... '': { ... 'handlers': ['default'], ... 'level': 'INFO', ... 'propagate': True ... }, ... } ... }) >>> >>> settings = {'send_logs_level': 'debug'} >>> client.execute('SELECT 1', settings=settings) 2018-12-14 10:24:53,873 INFO clickhouse_driver.log: {b328ad33-60e8-4012-b4cc-97f44a7b28f2} [ 25 ] <Debug> executeQuery: (from 127.0.0.1:57762) SELECT 1 2018-12-14 10:24:53,874 INFO clickhouse_driver.log: {b328ad33-60e8-4012-b4cc-97f44a7b28f2} [ 25 ] <Debug> executeQuery: Query pipeline: Expression Expression One 2018-12-14 10:24:53,875 INFO clickhouse_driver.log: {b328ad33-60e8-4012-b4cc-97f44a7b28f2} [ 25 ] <Information> executeQuery: Read 1 rows, 1.00 B in 0.004 sec., 262 rows/sec., 262.32 B/sec. 2018-12-14 10:24:53,875 INFO clickhouse_driver.log: {b328ad33-60e8-4012-b4cc-97f44a7b28f2} [ 25 ] <Debug> MemoryTracker: Peak memory usage (for query): 40.23 KiB. [(1,)]