Features¶
External data for query processing¶
You can pass external data alongside with query:
>>> tables = [{ ... 'name': 'ext', ... 'structure': [('x', 'Int32'), ('y', 'Array(Int32)')], ... 'data': [ ... {'x': 100, 'y': [2, 4, 6, 8]}, ... {'x': 500, 'y': [1, 3, 5, 7]}, ... ] ... }] >>> client.execute( ... 'SELECT sum(x) FROM ext', external_tables=tables ... ) [(600,)]
Settings¶
There are a lot of ClickHouse server settings. Settings can be specified during Client initialization:
# Set max number threads for all queries execution. >>> settings = {'max_threads': 2} >>> client = Client('localhost', settings=settings)
Each setting can be overridden in an execute
, execute_with_progress
and
execute_iter
statement:
# Set lower priority to query and limit max number threads # to execute the request. >>> settings = {'max_threads': 2, 'priority': 10} >>> client.execute('SHOW TABLES', settings=settings) [('first_table',)]
Compression¶
Native protocol supports two types of compression: LZ4 and ZSTD. When compression is enabled compressed data should be hashed using CityHash algorithm. Additional packages should be installed in order by enable compression support, see Installation from PyPI. Enabled client-side compression can save network traffic.
Client with compression support can be constructed as follows:
>>> from clickhouse_driver import Client >>> client_with_lz4 = Client('localhost', compression=True) >>> client_with_lz4 = Client('localhost', compression='lz4') >>> client_with_zstd = Client('localhost', compression='zstd')
Secure connection¶
>>> from clickhouse_driver import Client >>> >>> client = Client('localhost', secure=True) >>> # Using self-signed certificate. ... self_signed_client = Client( ... 'localhost', secure=True, ... ca_certs='/etc/clickhouse-server/server.crt' ... ) >>> # Disable verification. ... no_verifyed_client = Client( ... 'localhost', secure=True, verify=False ... ) >>> >>> # Example of secured client with Let's Encrypt certificate. ... import certifi >>> >>> client = Client( ... 'remote-host', secure=True, ca_certs=certifi.where() ... )
Specifying query id¶
You can manually set query identificator for each query. UUID for example:
>>> from uuid import uuid4 >>> >>> query_id = str(uuid4()) >>> print(query_id) bbd7dea3-eb63-4a21-b727-f55b420a7223 >>> client.execute( ... 'SELECT * FROM system.processes', query_id=query_id ... ) [(1, 'default', 'bbd7dea3-eb63-4a21-b727-f55b420a7223', '127.0.0.1', 57664, 'default', 'bbd7dea3-eb63-4a21-b727-f55b420a7223', '127.0.0.1', 57664, 1, 'klebedev', 'klebedev-ThinkPad-T460', 'ClickHouse python-driver', 18, 10, 3, 54406, 0, '', '', 0.004916541, 0, 0, 0, 0, 0, 0, 0, 0, 'SELECT * FROM system.processes', (25,), ('Query', 'SelectQuery', 'NetworkReceiveElapsedMicroseconds', 'ContextLock', 'RWLockAcquiredReadLocks'), (1, 1, 54, 9, 1), ('use_uncompressed_cache', 'load_balancing', 'max_memory_usage'), ('0', 'random', '10000000000'))]
You can cancel query with specific id by sending another query with the same query id if option replace_running_query is set to 1.
Query results are fetched by the same instance of Client that emitted query.
Retrieving results in columnar form¶
Columnar form sometimes can be more useful.
>>> client.execute('SELECT arrayJoin(range(3))', columnar=True) [(0, 1, 2)]
Data types checking on INSERT¶
Data types check is disabled for performance on INSERT
queries.
You can turn it on by types_check option:
>>> client.execute( ... 'INSERT INTO test (x) VALUES', [('abc', )], ... types_check=True ... ) 1
Query execution statistics¶
Client stores statistics about last query execution. It can be obtained by accessing last_query attribute. Statistics is sent from ClickHouse server and calculated on client side. last_query contains info about:
profile: rows before limit
>>> client.execute('SELECT arrayJoin(range(100)) LIMIT 3') [(0,), (1,), (2,)] >>> client.last_query.profile_info.rows_before_limit 100
- progress:
- processed rows;
- processed bytes;
- total rows;
- written rows (new in version 0.1.3);
- written bytes (new in version 0.1.3);
>>> client.execute('SELECT max(number) FROM numbers(10)') [(9,)] >>> client.last_query.progress.rows 10 >>> client.last_query.progress.bytes 80 >>> client.last_query.progress.total_rows 10
elapsed time:
>>> client.execute('SELECT sleep(1)') [(0,)] >>> client.last_query.elapsed 1.0060372352600098
Receiving server logs¶
Query logs can be received from server by using send_logs_level setting:
>>> from logging.config import dictConfig >>> # Simple logging configuration. ... dictConfig({ ... 'version': 1, ... 'disable_existing_loggers': False, ... 'formatters': { ... 'standard': { ... 'format': '%(asctime)s %(levelname)-8s %(name)s: %(message)s' ... }, ... }, ... 'handlers': { ... 'default': { ... 'level': 'INFO', ... 'formatter': 'standard', ... 'class': 'logging.StreamHandler', ... }, ... }, ... 'loggers': { ... '': { ... 'handlers': ['default'], ... 'level': 'INFO', ... 'propagate': True ... }, ... } ... }) >>> >>> settings = {'send_logs_level': 'debug'} >>> client.execute('SELECT 1', settings=settings) 2018-12-14 10:24:53,873 INFO clickhouse_driver.log: [ klebedev-ThinkPad-T460 ] [ 25 ] {b328ad33-60e8-4012-b4cc-97f44a7b28f2} <Debug> executeQuery: (from 127.0.0.1:57762) SELECT 1 2018-12-14 10:24:53,874 INFO clickhouse_driver.log: [ klebedev-ThinkPad-T460 ] [ 25 ] {b328ad33-60e8-4012-b4cc-97f44a7b28f2} <Debug> executeQuery: Query pipeline: Expression Expression One 2018-12-14 10:24:53,875 INFO clickhouse_driver.log: [ klebedev-ThinkPad-T460 ] [ 25 ] {b328ad33-60e8-4012-b4cc-97f44a7b28f2} <Information> executeQuery: Read 1 rows, 1.00 B in 0.004 sec., 262 rows/sec., 262.32 B/sec. 2018-12-14 10:24:53,875 INFO clickhouse_driver.log: [ klebedev-ThinkPad-T460 ] [ 25 ] {b328ad33-60e8-4012-b4cc-97f44a7b28f2} <Debug> MemoryTracker: Peak memory usage (for query): 40.23 KiB. [(1,)]
Multiple hosts¶
New in version 0.1.3.
Additional connection points can be defined by using alt_hosts. If main connection point is unavailable driver will use next one from alt_hosts.
This option is good for ClickHouse cluster with multiple replicas.
>>> from clickhouse_driver import Client >>> client = Client('host1', alt_hosts='host2:1234,host3,host4:5678')
In example above on every new connection driver will use following sequence of hosts if previous host is unavailable:
- host1:9000;
- host2:1234;
- host3:9000;
- host4:5678.
All queries within established connection will be sent to the same host.
Python DB API 2.0¶
New in version 0.1.3.
This driver is also implements DB API 2.0 specification. It can be useful for various integrations.
Threads may share the module and connections.
Parameters are expected in Python extended format codes, e.g. …WHERE name=%(name)s.
>>> from clickhouse_driver import connect >>> conn = connect('clickhouse://localhost') >>> cursor = conn.cursor() >>> >>> cursor.execute('SHOW TABLES') >>> cursor.fetchall() [('test',)] >>> cursor.execute('DROP TABLE IF EXISTS test') >>> cursor.fetchall() [] >>> cursor.execute('CREATE TABLE test (x Int32) ENGINE = Memory') >>> cursor.fetchall() [] >>> cursor.executemany( ... 'INSERT INTO test (x) VALUES', ... [{'x': 100}] ... ) >>> cursor.rowcount 1 >>> cursor.executemany('INSERT INTO test (x) VALUES', [[200]]) >>> cursor.rowcount 1 >>> cursor.execute( ... 'INSERT INTO test (x) ' ... 'SELECT * FROM system.numbers LIMIT %(limit)s', ... {'limit': 3} ... ) >>> cursor.rowcount 0 >>> cursor.execute('SELECT sum(x) FROM test') >>> cursor.fetchall() [(303,)]
ClickHouse native protocol is synchronous: when you emit query in connection you must read whole server response before sending next query through this connection. To make DB API thread-safe each cursor should use it’s own connection to the server. In Under the hood Cursor is wrapper around pure Client.
Connection class is just wrapper for handling multiple cursors (clients) and do not initiate actual connections to the ClickHouse server.
There are some non-standard ClickHouse-related Cursor methods for: external data, settings, etc.
For automatic disposal Connection and Cursor instances can be used as context managers:
>>> with connect('clickhouse://localhost') as conn: >>> with conn.cursor() as cursor: >>> cursor.execute('SHOW TABLES') >>> print(cursor.fetchall())
NumPy/Pandas support¶
New in version 0.1.6.
Starting from version 0.1.6 package can SELECT and INSERT columns as NumPy arrays. Additional packages are required for NumPy support.
>>> client = Client('localhost', settings={'use_numpy': True}): >>> client.execute( ... 'SELECT * FROM system.numbers LIMIT 10000', ... columnar=True ... ) [array([ 0, 1, 2, ..., 9997, 9998, 9999], dtype=uint64)]
Supported types:
- Float32/64
- [U]Int8/16/32/64
- Date/DateTime(‘timezone’)/DateTime64(‘timezone’)
- String/FixedString(N)
- LowCardinality(T)
- Nullable(T)
Direct loading into NumPy arrays increases performance and lowers memory requirements on large amounts of rows.
Direct loading into pandas DataFrame is also supported by using query_dataframe:
>>> client = Client('localhost', settings={'use_numpy': True}) >>> client.query_dataframe(' ... 'SELECT number AS x, (number + 100) AS y ' ... 'FROM system.numbers LIMIT 10000' ... ) x y 0 0 100 1 1 101 2 2 102 3 3 103 4 4 104 ... ... ... 9995 9995 10095 9996 9996 10096 9997 9997 10097 9998 9998 10098 9999 9999 10099 [10000 rows x 2 columns]
Writing pandas DataFrame is also supported with insert_dataframe:
>>> client = Client('localhost', settings={'use_numpy': True}) >>> client.execute( ... 'CREATE TABLE test (x Int64, y Int64) Engine = Memory' ... ) >>> [] >>> df = client.query_dataframe( ... 'SELECT number AS x, (number + 100) AS y ' ... 'FROM system.numbers LIMIT 10000' ... ) >>> client.insert_dataframe('INSERT INTO test VALUES', df) >>> 10000
Starting from version 0.2.2 nullable columns are also supported. Keep in mind
that nullable columns have object
dtype. For convenience np.nan
and
None
is supported as NULL
values for inserting. But only None
is
returned after selecting for NULL
values.
>>> client = Client('localhost', settings={'use_numpy': True}) >>> client.execute( ... 'CREATE TABLE test (' ... 'a Nullable(Int64), ... 'b Nullable(Float64), ... 'c Nullable(String)' ... ') Engine = Memory' ... ) >>> [] >>> df = pd.DataFrame({ ... 'a': [1, None, None], ... 'b': [1.0, None, np.nan], ... 'c': ['a', None, np.nan], ... }, dtype=object) >>> client.insert_dataframe('INSERT INTO test VALUES', df) 3 >>> client.query_dataframe('SELECT * FROM test') a b c 0 1 1 a 1 None None None 2 None NaN None
It’s important to specify dtype during dataframe creation:
>>> bad_df = pd.DataFrame({ ... 'a': [1, None, None], ... 'b': [1.0, None, np.nan], ... 'c': ['a', None, np.nan], ... }) >>> bad_df a b c 0 1.0 1.0 a 1 NaN NaN None 2 NaN NaN NaN >>> good_df = pd.DataFrame({ ... 'a': [1, None, None], ... 'b': [1.0, None, np.nan], ... 'c': ['a', None, np.nan], ... }, dtype=object) >>> good_df a b c 0 1 1 a 1 None None None 2 None NaN NaN
As you can see float column b
in bad_df
has two NaN
values.
But NaN
and None
is not the same for float point numbers.
NaN
is float('nan')
where None
is representing NULL
.
Automatic disposal¶
New in version 0.2.2.
Each Client instance can be used as a context manager:
>>> with Client('localhost') as client: >>> client.execute('SELECT 1')
Upon exit, any established connection to the ClickHouse server will be closed automatically.